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Abstract

This paper deals with the system mode analysis of horizontal vibration for 3-D two-link flexible
manipulators. For the analysis, we formulate and solve a set of partial differential equations which
represent vibration mixed with bending and torsional moment. The inclusion of torsional vibration
complicates the analysis, but the results are more precise and realistic. We obtain a number of geometrical
and dynamical boundary conditions depending on manipulator configuration. There are two possible
boundary conditions at the rotary joint: clamped and pinned with spring condition. We perform a
examination and comparison between the two joint conditions. Numerical and experimental tests show the
validity and effectiveness of the proposed analysis and modelling.
r 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

Precise modelling of vibration in a flexible structure is the fundamental step toward
sophisticated vibration control. So far, the vibrations of links in most of the flexible robots
have been modelled by the assumed mode solutions of each flexible link (i.e., component mode of
each link). They need a large number of mode solutions and many degrees of freedoms so that the
modellings are accurate enough. The component modes of vibration, which originally contain the
local nature of each link, are combined together to yield system mode of vibration. Oakley [1]
stated that a larger dimension of component modes is needed to obtain a certain dimension of
system modes. Consequently, a greater dimensional eigenvalue decomposition has to be solved,
but it is too time-consuming to compute on-line. In addition, the resulting system mode shapes
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after eigenvalue decomposition may be erroneous due to inexact boundary conditions. A few
papers deal with the analysis of system mode vibration of two connected flexible members. The
exact system mode of L-shaped flexible structure was studied by Bang [2]. Milford and
Asokanthan [3] discussed the analysis of system mode vibration of planar two-link flexible robot,
directly solving partial differential equations. For simplicity, they assumed each rotary joint as the
clamped boundary. More detailed and completed work was done by Cheong et al. [4]. In their
work, four possible sets of joint boundary conditions were investigated. To model the boundary
condition of each joint, the spring-hinged condition was included in parallel with clamped
condition. This enables us to observe the effect of joint servo gain, similarly done by Garcia and
Inman [5], and Cetinkunt and Yu [6].
Until now, the analysis of system mode vibration of 3-D flexible robots shown in Fig. 1 has not

been studied. Apparently, the geometric joint workspace may be decomposed into horizontal and
vertical planes at the instant as shown in Ref. [7]. The 3-D vibration of the robot is also
decomposed in a similar way. We define the vertical vibration to be the vibration that occurred by
the rotation of joint 2 and/or joint 3, while the horizontal vibration occurred solely by the rotation
of joint 1. For system mode analysis of the vertical vibration, one can directly apply the results of
two-link flexible robots moving in a plane in Refs. [3,4]. Hence, if the analysis of horizontal
vibration has been performed, we will have completed the analysis for the system mode vibration
of 3-D vibration. An interesting feature of the horizontal vibration is that it incorporates torsional
vibration. This is caused by the geometric asymmetry about the longitudinal axis of the upper
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Fig. 1. Schematic of 3-D flexible manipulator.
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link. Research works related with coupled bending-torsional problems can be found in Ref. [8],
where the torsional moment due to the asymmetry of the lumped mass at the tip was treated in a
single link flexible robot, and in Ref. [9], where the estimation of 3-D vibration including torsion
in a multi-link robot was studied using the component mode analysis. Practical examples of
horizontal motion with horizontal vibration can be found in other applications like the tower
crane and the pump car. The slender booms or pipes of those machines produce vibrations when
they undergo horizontal motions. If we have accurate knowledge about the characteristics of the
horizontal vibration, we can speed up tasks and increase productivity by a proper control of the
vibration.
In this paper, we will solve the horizontal vibration of a 3-D two-link robot; we will use the

extended Hamilton’s principle to derive the governing equations and the corresponding boundary
conditions. After setting up the equations, the system mode analysis will be carried out. The
coupling effect between bending and torsion is also fully studied. The outline of this paper is as
follows: Modelling and notation necessary for subsequent development are described in Section 2.
Section 3 is devoted to the analysis of the system mode of horizontal vibration. Numerical and
experimental results are given in Sections 4 and 5, respectively. Finally, conclusions are presented
in Section 6.

2. Modelling

Consider a 3-D manipulator with two flexible links as shown in Fig. 1, where e denotes shoulder
offset. As defined in the previous section, the decomposition of the 3-D vibration into vertical and
horizontal vibration makes the analysis easy. Note that the horizontal vibration may have vertical
components of displacement in Cartesian space due to the torsional motion. However, since the
torsional motion always combined with horizontal rotation, we conveniently consider the
vibration from the horizontal rotation as the horizontal vibration. On the other hand, the vertical
vibration remains only in the vertical motion plane.
In conventional modelling, the horizontal and vertical vibrations of each link are

mathematically described by the summation of assumed component modes such that

yiðxi; tÞ ¼
Xmi

k¼1

ci;kðxiÞri;kðtÞ; i ¼ 2; 3; viðxi; tÞ ¼
Xmi

k¼1

fi;kðxiÞsi;kðtÞ; i ¼ 2; 3; ð1Þ

where yi and vi are the horizontal and vertical vibrations, respectively, and i and k denote link
number and mode number, respectively. mi is the number of vibration modes in the ith link. The
first link is rigid, so the two flexible links are numbered as the second and the third links. ci;kðxiÞ
and fi;kðxiÞ are mode shape functions of horizontal and vertical vibration, ri;kðtÞ and si;kðtÞ are
their corresponding time functions, and xi is the domain of the ith link such that 0pxipLi; where
Li is the length of the ith link. From the structure of the flexible robot in Fig. 1, it can be written as

yh9y1; hv9½y2 y3�T; th9t1; sv9½t2 t3�T;

where h and v represent variables related with horizontal and vertical subspaces. According to a
physical observation, the natural frequencies and mode shapes of both subsystems are changing
mainly according to the variation of the elbow joint y3:
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In an accurate modelling, the assumed mode expansion up to finite numbers may fail to
describe a real vibration in wide range of configurations due to inexact boundary conditions and
discontinuity at the interconnection of flexible links. Also, we have no systematic way to
determine how many modes are included to describe actual vibration accurately. The use of the
system mode description will eliminate these problems. In this paper, our major concern will be
the analysis of the horizontal vibration in a completely analytic way.

3. Horizontal system mode analysis

Fig. 2 illustrates the definitions of horizontal vibration using the component mode description
and the system mode description; in the component mode description, the vibration of each link is
defined only along the side of each link, but in the system mode description, the vibration is
defined over the whole body. The advantage of the component modes is that they can be solved
easily or simply obtained from engineering handbooks. The disadvantage is that they are liable to
give inaccurate composite modes when they are fused together by the eigenvalue decomposition.
Moreover, the eigenvalue decomposition takes large computation time; as the dimension
increases, the eigenvalue problem takes much more time. We cannot avoided the eigenvalue
decomposition procedures if the component mode description is applied at the modelling step.
The system mode description is much better in obtaining more accurate vibration modes even if it
is a little complicated to formulate and solve. Also, using the system mode description, we can
approximate the vibration precisely with a lower number of modes without the eigenvalue
decomposition.
In general 3-D robot systems, the horizontal and vertical motions appear simultaneously in 3-D

space. This makes it difficult for us to simply decompose 3-D motion into pure vertical and
horizontal motions; they are coupled with each other. However, fortunately, the only coupling
terms between the two plane motions are velocity terms. When we linearize the system about an
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operating point where all the velocity terms are zero, two motions can be decoupled. Actually, the
coupling force do not contribute the natural modes of vibration, and it can be definitely
interpreted as the non-linear forcing terms acting on each linear vibration system. Another thing
to note is that the effect of torsional vibration appears during the horizontal rotation. The torsion
does not arise during the pure vertical motion. Since it is combined with the horizontal bending
deflection, this makes the deflection more severe. The effect of the torsional vibration increases
when the relative angle y3 between two links are large. Fig. 3 depicts the effect of torsion to the
horizontal vibration. Due to the torsion, the bending deflection of the lower link becomes larger.

3.1. Derivation of equations of motion

The governing equations and the corresponding boundary conditions of the system in Fig. 2(b)
can be obtained using the extended Hamilton’s principle [10]. According to the Hamilton’s
principle, the Lagrangian and non-conservative work have the following relation for arbitrary
time t1 and t2: Z t2

t1

ðdL� dWncÞ dt; ð2Þ

whereL ¼ K�P andWnc are the Lagrangian and work done by external forces, andK and P
are the kinetic energy and the potential energy, respectively. For developing the governing
equations, we make assumptions:

* the joint variables are fixed at a given configuration,
* the effect of should offset is neglected since it is small, and
* the torsional vibration in the lower flexible link is neglected since the majority of the torsional
vibration arises in the upper link.
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First we consider the clamped joint case; thus, joint 1 is fixed without motion. The kinetic energy
of the horizontal vibration K is

K ¼ K0 þK1; ð3Þ

where K0 and K1 are the portions of kinetic energies by lumped elements and elastic links,
respectively, and they are defined as

K0 ¼ 1
2
Mcð ’y2ðL2ÞÞ

2 þ 1
2

Mtipð ’y3ðL3ÞÞ
2 þ 1

2
Icð ’y02ðL2ÞÞ

2

þ 1
2

Itipð ’y03ðL3ÞÞ
2 þ 1

2
Jcð ’T2ðL2ÞÞ

2; ð4Þ

K1 ¼
1

2

Z L2

0

r2 ’y
2
2 dx2 þ

1

2

Z L3

0

r3 ’y
2
3 dx3 þ

1

2

Z L2

0

b2 ’T
2
2 dx2; ð5Þ

where y2 and y3 are the horizontal bending deflection of links 2 and 3, and T2 is the torsional
deflection of link 2; Mc and Mtip are the center mass and tip mass, Ic an Itip are the moment of
inertia of the center mass and tip mass in the direction of bending moment, and Jc is the moment
of inertia of the total outer body from the center in the direction of the torsional moment—Jc

depends on the elbow angle y3; r2 and r3 are the density of links 2 and 3, and b2 is the unit polar
moment of inertia of link 2. The dot and prime mean the time derivative and spatial derivative,
respectively.
For the potential energy P; we consider the elastic potential energy only such that

P ¼
1

2
EI2

Z L2

0

ðy002Þ
2 dx2 þ

1

2
EI3

Z L3

0

ðy003Þ
2 dx3 þ

1

2
GJ2

Z L2

0

ðT 0
2Þ
2 dx2; ð6Þ

where EIi is the flexural rigidity of the ith link, and GI2 is the torsional rigidity of link 2. If we
rewrite the Lagrangian as

L ¼ L0 þL1; ð7Þ

where L0 ¼ K0 and L1 ¼ K1 �P; the Lagrangian density functions for L1 can be defined:

L1 ¼
Z L2

0

h2 dx2 þ
Z L3

0

h3 dx3 þ
Z L2

0

g2 dx2; ð8Þ

where

h2 ¼ 1
2
r2 ’y

2
2 �

1
2
EI2ðy00

2Þ
2;

h3 ¼ 1
2
r3 ’y

2
3 �

1
2
EI3ðy00

3Þ
2;

g2 ¼ 1
2b2

’T2
2 �

1
2GJ2ðT 0

2Þ
2;

are the Lagrangian density functions. As for the non-conservative work Wnc; we do not have to
consider it because there is no external force when we assume the joint boundary to be
clamped.The variation of Lagrangian L1 becomes

dL ¼ dL0 þ dL1

¼ dL0 þ
Z L2

0

dh2 dx2 þ
Z L3

0

dh3 dx3 þ
Z L2

0

dg2 dx2; ð9Þ

ARTICLE IN PRESS

J. Cheong, Y. Youm / Journal of Sound and Vibration 268 (2003) 49–7054



where

dh2 ¼
@h2

@ ’y2
d ’y2 þ

@h2

@y002
dy00

2;

dh3 ¼
@h3

@ ’y3
d ’y3 þ

@h3

@y003
dy00

3;

dg2 ¼
@g2

@ ’T2

d ’T2 þ
@g2

@T 0
2

dT 0
2:

Performing the integration by parts, dL1 can be rewritten as follows:

dL1 ¼ �
Z L2

0

@

@t

@h2

@ ’y2

� �
�

@h2

@y00
2

� �00� �
dy2 dx2

�
Z L3

0

@

@t

@h3

@ ’y3

� �
�

@h3

@y00
3

� �00� �
dy3 dx3

�
Z L2

0

@

@t

@g2

@ ’T2

� �
þ

@T2

@T 0
2

� �0� �
dT2 dx2

þ
@h2

@y00
2

dy0
2

��L2

0
�

@h2

@y00
2

� �0

dy2j
L2

0 þ
@h3

@y003
dy0

3

��L3

0

�
@h3

@y00
3

� �0

dy3j
L3

0 þ
@g2

@T 0
2

dT2j
L2

0 : ð10Þ

In the above, terms inside of each bracket in the first three lines determine the equations of
motions, and the other lines determine the boundary conditions in conjunction with dL0 which is
written as

dL0 ¼ �
@

@t

@L0

@ ’y2

� �
dy2ðL2Þ �

@

@t

@L0

@ ’y3

� �
dy3ðL3Þ �

@

@t

@L0

@ ’y02

� �
dy02ðL2Þ

�
@

@t

@L0

@ ’y0
3

� �
dy03ðL3Þ �

@

@t

@L0

@ ’T2

� �
dT2ðL2Þ: ð11Þ

See Ref. [10] for the derivation of Eq. (11). If we put kinetic and potential energies in Eqs. (4)–(6)
into dL0 and dL1; we can get the equations of motions and corresponding boundary conditions
after a consider a considerable amount of mathematical manipulation. The equations of motions
and boundary conditions are so determined to satisfy Eq. (2) always for arbitrary variations of
variables at all boundaries.
From Eq. (10), the equations of motions are

EI2y
0000
2 þ r2 .y2 ¼ 0; ð12Þ

EI3y
0000
3 þ r3 .y3 ¼ 0; ð13Þ

GJ2T
00
2 þ b2 .T2 ¼ 0; ð14Þ
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where the first two equations represent the bending vibrations of two flexible links, and the last
equation represents the torsional vibration of link 2. The boundary conditions are obtained not
only from the natural conditions but also from geometric constraints [1]. The natural boundary
conditions can be determined by gathering variations at boundaries and making them zero
without regard to those variations, while the geometric boundary conditions are given in the
kinematic level initially.
(a) At x2 ¼ 0: Since the rotary joint 1 is assumed clamped, there are three geometric constraints

as follows:

y2ð0Þ ¼ y0
2ð0Þ ¼ 0 and T2ð0Þ ¼ 0: ð15Þ

(b) At x2 ¼ L2 or x3 ¼ 0: The center mass is located in between two successive links so that the
continuity of geometry and various force balance should be met.

y2ðL2Þ ¼ y3ð0Þ; ð16Þ

y0
2ðL2Þ � T2ðL2Þ sin y3 ¼ y0

3ð0Þ; ð17Þ

EI2y
00
2ðL2Þ ¼ EI3y

00
3ð0Þ � Ic .y

0
2ðL2Þ; ð18Þ

EI2y
000
2 ðL2Þ ¼ EI3y

000
3 ð0Þ þ Mc .y2ðL2Þ; ð19Þ

GJ2T
0
2ðL2Þ ¼ Jc

.T2ðL2Þ; ð20Þ

where the first two equations come from the geometric continuity of displacement and rotation,
and the last three come from the natural boundary conditions, i.e., the bending moment, shear
force, and torsional moment balances.
(c) At x3 ¼ L3:

EI3y
00
3ðL2Þ ¼ �Itip .y

0
3ðL3Þ; ð21Þ

EI3y
000
3 ðL2Þ ¼ Mtip .y3ðL3Þ; ð22Þ

where the first equation is the moment balance, and the second is the shear force balance at
the tip.
Next we will derive the governing equations and boundary conditions when the joint boundary

is assumed to be pinned–spring. The big difference is that we should include the effect of the
rotation of joint 1 to K0 such that

K0 ¼ 1
2
J1 ’y21 þ

1
2
Mcð ’y2ðL2ÞÞ

2 þ 1
2
Mtipð ’y3ðL3ÞÞ

2 þ 1
2
Icð ’y02ðL2ÞÞ

2

þ 1
2
Itipð ’y03ðL3ÞÞ

2 þ 1
2
Jcð ’T2ðL2ÞÞ

2; ð23Þ

where J1 is the rotary inertia of joint 1. The angular rotation of joint 1 is assumed to be small, and
this assumption is reasonable when the robot’s joint is controlled by stable controller. Under the
assumption, we have the following trigonometric relation:

y1 sin y2 ¼ y02ð0Þ: ð24Þ
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The kinetic energy from elastic links K1 and the potential energy P are the same as before in
Eqs. (5) and (6). However, the non-conservative work is no longer zero; it should be

dWnc ¼ t1 dy1 ¼ t1 dy02ð0Þ=sin y2; ð25Þ

where t1 is the torque at joint 1. Suppose that the proportional control is the dominant servo
action. Then, we can set t1 ¼ �K1y1; where K1 is the proportional gain. It is interesting to
investigate the effect of this gain, which will be shown later. We call this kind of boundary the
pinned with spring condition [5] even though the spring is artificially given. Putting the kinetic
energy in Eq. (23) and the non-conservative work in Eq. (25) into Eq. (2), we can obtain the
governing equations and boundary conditions. Simply, the governing equations are the same as in
Eqs. (12)–(14), whereas the boundary conditions at y2 ¼ 0 are different as follows:

y2ð0Þ ¼ 0; T2ð0Þ ¼ 0;

EI2y
00
2ð0Þ sin

2 y2 ¼ K1y
0
2ð0Þ þ J1 .y

0
2ð0Þ: ð26Þ

The underlying meaning of Eq. (26) is that the slope y02ð0Þ at the joint is being constrained by the
spring while the elastic moment is acting on. If K1 is large, the slope at the joint will remain very
small as if it were clamped at the joint. On the contrary, if K1 is small, then the slope of link will
not be regulated well; it rather looks like a pinned boundary. The change of y2 also affects joint
boundary condition. As sin2 y2 is fairly decreased, joint 1 becomes a heavier inertia and a larger
servo gain actuator. Extremely, if y2 becomes zero, the bending moment at joint boundary cannot
be exerted on the joint. If y2 is p=2; the bending moment is transferred directly to joint 1. Thus, K1

and y2 are key parameters for the characteristics of pinned–spring boundary condition at joint 1.
The other boundary conditions are the same as the previous development in Eqs. (16)–(22).

3.2. System mode analysis

In Eqs. (12)–(14), the governing equations of bending and torsion are decoupled from each
other. However, those boundary conditions are mixed complicatedly, which makes bending and
torsional vibrations depending on each other. In the system mode analysis, every vibration mode
is solved together by combining all the conditions. This implies that each of the modal time
functions is the common solution of all the participating bending and torsional vibrations.
Consider m number of series solution of the bending vibration yðx; tÞ that covers the entire
domain:

yðx; tÞ ¼
y2ðx2; tÞ ¼

Pm
j¼1 fjðx2ÞqjðtÞ; 0px ¼ x2pL2;

y3ðx3; tÞ ¼
Pm

j¼1 cjðx3ÞqjðtÞ; 0px � L2 ¼ x3pL3;

(
ð27Þ

where fj and cj are the jth system mode shapes of bending vibration for links 2 and 3,
respectively, and qj is the time function for the jth system mode. The bending vibration yðx; tÞ is
made by just patching y2 and y3; using the common time function qj: This is because qj represents
the system mode of the whole system. It prevails in the whole domain of the horizontal vibration
system. On the other hand, in the conventional component mode analysis, time functions should
be defined differently in y2 and y3: Similarly, the series solution of torsional deflection in system
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modes can be written as

Tðx; tÞ ¼
T2ðx2; tÞ ¼

Pm
j¼1 Zjðx2ÞqjðtÞ; 0px ¼ x2pL2;

T3ðx3; tÞ;¼ 0; 0px � L3 ¼ x3pL3;

(
ð28Þ

where Zj is the jth system mode shape for torsional vibration of link 2. Again, we use the same
time function qjðtÞ because we are to solve the system modes mixed with every bending and
torsional vibrations coupled with along the entire system. The torsional deflection at link 3 is set
to identically zero as assumed in the beginning of this section. According to vibration theory,
normal mode time solution can be written as

qjðtÞ ¼ expðojtÞ; ð29Þ

where oj is the natural frequency of the jth system mode.
Substituting Eqs. (27)–(29) into Eqs. (12)–(14), the spatial solutions of bending vibration can be

determined by the ordinary differential equations (ODEs) such that

f0000
j ðx2Þ � l4j fjðx2Þ ¼ 0;

c0000
j ðx3Þ � m4j cjðx3Þ ¼ 0; ð30Þ

and that of torsional vibration can be obtained by the second order ODE as

Z00j ðx2Þ þ k2j Zjðx2Þ ¼ 0: ð31Þ

In the above, we defined that l4j 9r2o
2
j =EI2; m4j 9r3o

2
j =EI3; and k2j 9b2o2

j =GJ2; so it is satisfied
that

mj ¼
EI2 r3
EI3 r2

� �1=4

lj and kj ¼
EI2 b2

GJ2 r2

� �1=2

l2j : ð32Þ

The general forms of the solutions of Eqs. (30) and (31) can be given by

fjðx2Þ ¼ A1 sinðljx2Þ þ B1 sinhðljx2Þ þ C1 cosðljx2Þ þ D1 coshðljx2Þ;

cjðx3Þ ¼ A2 sinðmjx3Þ þ B2 sinhðmjx3Þ þ C2 cosðmjx3Þ þ D2 coshðmjx3Þ;

Zjðx2Þ ¼ A3 sinðkjx2Þ þ B3 cosðkjx2Þ: ð33Þ

Introducing Eqs. (27)–(29) into boundary conditions, we can rewrite them in terms of spatial
functions, i.e., fjðx2Þ;cjðx3Þ; and Zjðx2Þ: Furthermore, if the spatial solutions in Eq. (33) are
substituted, we will get a set of linear homogeneous equations which are written in a linear matrix
equation as

HðlÞv ¼ 0; ð34Þ

where v ¼ ½A1 B1 C1 D1 A2 B2 C2 D2 A3 B3�T is a vector of undetermined constant. Element by
element expression of HðlÞ is not provided due to space limitation, but it is straightforward to
determineHðlÞ without difficulty. The eigenvalues (or natural frequencies) of whole system can be
determined from the frequency equation given by

detðHðlÞÞ ¼ 0 ð35Þ
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at the non-trivial solutions l’s. The closed form of detðHðlÞÞ is complex, so a symbolic package
will be useful. The Macsyma1 package was utilized in this paper to get HðlÞ and its determinant in
symbolic way. For determined solutions either symbolically or numerically, non-trivial v’s, which
are called eigenvectors, will be obtained in the null space of HðlÞ: These vectors determine the
system mode shapes of the horizontal subsystem.

3.3. Orthogonal relations

By imposing all the boundary conditions on the governing equations, the orthogonal relations
between mode shapes are obtained for both cases where joint 1 is modelled to be clamped and
pinned–spring. These orthogonal relations will be useful in extracting mode shapes from the
displacement data. We can also confirm the validity of the boundary conditions by deriving these
relations.
(a) Clamped at joint 1: If joint 1 is clamped, the orthogonal relation isZ L2

0

r2fiðx2Þfjðx2Þ dx2 þ
Z L3

0

r3ciðx3Þcjðx3Þ dx3 þ
Z L2

0

b2Ziðx2ÞZjðx2Þ dx2

þ McfiðL2ÞfjðL2Þ þ Icf
0
iðL2Þf

0
jðL2Þ þ MtipciðL3ÞcjðL3Þ

þ Itipc
0
iðL3Þc

0
jðL3Þ þ JcZiðL2ÞZjðL2Þ ¼ 0 if iaj: ð36Þ

For the proof, see Appendix A.
(b) Pinned–spring at joint 1: If joint 1 is spring-hinged, the orthogonal relation isZ L2

0

r2fiðx2Þfjðx2Þ dx2 þ
Z L3

0

r3ciðx3Þcjðx3Þ dx3 þ
Z L2

0

b2Ziðx2ÞZjðx2Þ dx2

þ
J1

sin2 y2
f0

ið0Þf
0
jð0Þ þ McfiðL2ÞfjðL2Þ þ Icf

0
iðL2Þf

0
jðL2Þ þ MtipciðL3ÞcjðL3Þ

þ Itipc
0
iðL3Þc

0
jðL3Þ þ JcZiðL2ÞZjðL2Þ ¼ 0 if iaj: ð37Þ

For the proof, see Appendix A.

4. Numerical examples

The numerical examples illustrate how we can obtain the solutions of the system modes and
what the results look like. The calculated natural frequencies and mode shapes will be compared
according to the boundary condition at joint 1. The numerical values applied to a robot model are
summarized in Table 1.

Modal frequencies: Assuming that joint 1 is clamped, the first three natural frequencies of
horizontal vibration are summarized in Table 2 at various configurations. Roughly, the first mode
is ranging from 1.7 to 2 Hz; while the second mode is ranging from 5 to 3 Hz as y3 varies from 01
to 901: These two modes move reversely as y3 increases, and they are expected to be the same value
when two links are folded exactly. To ascertain the effect of torsional coupling, we also investigate
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the case where the torsional moment is neglected. The natural frequencies for this case are
summarized in Table 3. If we compare these results, we can find out that torsional moment lowers
the natural frequencies of the system. The effect of torsional moment becomes clear around
y3 ¼ 901: We can conjecture the reason from the physical sense that the eccentricity by link 3
about the longitudinal axis of link 2 is maximized at y3 ¼ 901:
As another comparative work, the pinned–spring boundary condition at joint 1 is investigated.

Table 4 shows its first three natural frequencies for different proportional gains and for different
y3; while y2 is fixed to 901: As the proportional gain K1 becomes larger, the corresponding natural
frequencies are increasing, and they approach to those of the ideal clamped natural frequencies.
This result definitely supports the previous works from Refs. [5,6]. The effect of shoulder angle y2
on the natural mode is shown in Table 5. The values of K1 and y3 are kept constant to 100 and 01;
and y2 is varied. As y2 becomes smaller, the first two natural modes are increased, but the third
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Table 1

Physical parameters

Parameters Symbol Value

Length of link 2 L2 0.52 (m)

Length of link 3 L3 0.52 (m)

Mass of link 2 m2 0.44 (kg)

Mass of link 3 m3 0.16 (kg)

Center mass Mc 1.58 (kg)

Mass of lumped tip Mtip 0.29 (kg)

Inertia of joint 1 J1 0.00932 ðkg m2Þ
Inertia of center mass Ic 0.00365 ðkg m2Þ
Inertia of end tip mass Itip 0.0000293 ðkg m2Þ
Flexural rigidity of link 2 EI2 24.4 ðN m2Þ
Flexural rigidity of link 3 EI3 6.35 ðN m2Þ
Shear rigidity of link 2 GJ2 17.23 ðN m2Þ

Table 2

Clamped joint

Elbow angle ðy3Þ (deg) f1 (Hz) f2 (Hz) f3 (Hz)

0 1.7089 5.0604 16.9262

10 1.7152 4.9907 17.1548

20 1.7244 4.8009 17.6484

30 1.7420 4.5451 18.4020

40 1.7625 4.2581 19.2849

50 1.8299 3.9878 20.1884

60 1.8334 3.7478 20.8585

70 1.8848 3.5431 21.4025

80 1.9904 3.3306 21.7633

90 2.0271 3.2036 21.9361
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mode is decreased. Considering the overall results, we are sure that the characteristics of the
natural mode depend strongly on the boundary condition at joint 1. If it is clamped, the natural
modes vary only according to the relative shape of two flexible links. If it is the pinned–spring, the
natural modes are affected by the shoulder and elbow angles as well as controller gain.

Mode shapes: The mode shapes of horizontal vibration are very important in vibration
suppression control since they provide the stable direction of controlled modes. Depending upon
the joint boundary conditions and arm configurations, the mode shapes change considerably.
Figs. 4 and 5 show the noticeable differences of mode shapes between clamped and pinned–spring
joint conditions. To illustrate effectively, two links are depicted to lie on the horizontal plane in
these figures. In the clamped joint case, the third mode is nearly stationary at the lumped mass
positions, which is not the case in the pinned–spring condition. On the whole, every node in the
mode shapes of the pinned–spring joint case appears in the middle of the flexible link.
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Table 4

Pinned–spring joint: ðy2 ¼ 901Þ

Elbow angle ðy3Þ (deg) K1 ¼ 50 K1 ¼ 100 K1 ¼ 300

f1 (Hz) f2 (Hz) f3 (Hz) f1 (Hz) f2 (Hz) f3 (Hz) f1 (Hz) f2 (Hz) f3 (Hz)

0 0.9970 4.0546 10.1475 1.2249 4.2670 11.0931 1.4997 4.6402 14.4143

10 0.9988 4.0063 10.1204 1.2257 4.2125 11.0773 1.5020 4.5791 14.3891

20 1.0080 3.8655 10.0441 1.2390 4.0471 11.0036 1.5119 4.4043 14.3316

30 1.0230 3.6624 9.9622 1.2556 3.8415 10.9179 1.5302 4.1648 14.2771

40 1.0433 3.4360 9.8807 1.2805 3.5990 10.8630 1.5577 3.8997 14.2282

50 1.0702 3.2102 9.8145 1.3142 3.3577 10.8143 1.5921 3.6398 14.2142

60 1.10101 3.0532 9.7648 1.3527 3.1378 10.7778 1.6372 3.4018 14.2000

70 1.1402 2.8256 9.7359 1.4004 2.9443 10.7536 1.6921 3.1924 14.1864

80 1.1821 2.679 9.7302 1.4565 2.7817 10.7354 1.7601 3.0126 14.1780

90 1.2257 2.5729 9.7013 1.5210 2.6536 10.7293 1.8410 2.8643 14.1752

Table 3

Clamped joint without torsion

Elbow angle ðy3Þ (deg) f1 (Hz) f2 (Hz) f3 (Hz)

0 1.7123 5.0637 33.3751

10 1.7211 5.0513 33.3880

20 1.7469 5.0139 33.4521

30 1.7906 4.9480 33.5462

40 1.8520 4.8562 33.6835

50 1.9309 4.7347 33.8339

60 2.0271 4.5807 33.9781

70 2.1375 4.4012 34.0817

80 2.2626 4.1973 34.1011

90 2.3952 3.9782 34.0191
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Table 5

Effect of shoulder joint angle: (K1 ¼ 100; y3 ¼ 01)

Shoulder angle ðy2Þ (deg) f1 (Hz) f2 (Hz) f3 (Hz)

10 1.6890 4.9479 7.0895

20 1.6180 4.7605 7.6310

30 1.5485 4.6000 8.3520

40 1.4445 4.4588 9.0500

50 1.3916 4.4100 9.7070

60 1.3220 4.3424 10.3511

70 1.2680 4.2880 10.7110

80 1.2308 4.2700 11.0030

90 1.2249 4.2670 11.0930

0
0.1

0.2
0.3

0.4
0.5 0

0.2
0.4

0.6
0.8

1

-1

-0.5

0

0.5

Y [m]
X [m]

H
or

iz
on

ta
l M

od
es

Rigid Mode 
First Mode 
Second Mode
Third Mode 

Link 2 

Link 3 

0
0.1

0.2
0.3 0

0.2
0.4

0.6
0.8

1
-1

-0.5

0

0.5

1

Y [m]
X [m]

H
or

iz
on

ta
l M

od
es

Rigid Mode 
First Mode 
Second Mode
Third Mode 

Link 3
Link 2 

0
0.1

0.2
0.3 0

0.2
0.4

0.6
0.8

1-1

-0.5

0

0.5

1

Y [m]X [m]

H
or

iz
on

ta
l M

od
es

Rigid Mode 
First Mode 
Second Mode
Third Mode 

Link 2 

Link 3 

-0.2
-0.1

0
0.1

0.2
0.3

0.4 0
0.2

0.4
0.6

0.8
1

-1

-0.5

0

0.5

1

Y [m]
X [m]

H
or

iz
on

ta
l M

od
es

Rigid Mode 
First Mode 
Second Mode
Third Mode 

Link 2 

Link 3 

(a)                                 �3 =   0°

(c)                                 �3 =   60° (d)                                 �3 =9   0°

(b)                                 �3 =   30°

Fig. 4. Mode shapes of horizontal vibration: clamped.
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5. Experimental verification

To verify the system mode analysis, we performed modal tests to the POSTECH flexible robot
shown in Fig. 6. The robot has three joints and two flexible links. Each flexible link has circular
cross-section and it is made of steel with high elasticity. The vibrations are measured by strain
gauges attached at the sides of links. The physical parameters of the robot system is the same as
Table 1. The natural frequencies of both clamped and pinned–spring boundary conditions were
collected at various configurations using FFT technique. Then, they were compared with the
numerically calculated results. For obtaining the natural frequencies of the clamped joint
condition, we tightly locked joint 1 and exerted impact at the tip of robot. Table 6 illustrates the
corresponding natural frequencies according to the variation of y3: As one can notice, the first two
measured frequencies are very close to the numerical results in Table 2. FFT plots at four
configurations are shown in Fig. 7. Due to the narrow bandwidth and low pass characteristic of
our sensor system, high-frequency modes over the second mode were not visible. Table 7 shows
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the first three natural frequencies for the pinned–spring boundary condition at joint 1 with
different proportional gains. To implement the pinned–spring condition, the nonlinear friction in
the joint was compensated dynamically. The compensated friction torque is mathematically
modelled as

tf ¼ t0 sgnð’y1Þ þ Kf
’y1; ð38Þ

where t0 is Coulomb’s friction, Kf is the viscous friction coefficient, and sgnð
Þ is the signum
function. Thus, the control torque in joint 1 was given by

t1 ¼ �Kpy0
2ð0Þ þ tf ; ð39Þ
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Table 6

Clamped joint: experiment

Elbow angle ðy3Þ (deg) f1 (Hz) f2 (Hz)

0 1.7090 5.1269

10 1.7090 5.1269

20 1.7090 4.8828

30 1.7090 4.6386

40 1.7090 4.3945

50 1.7090 4.0283

60 1.7090 3.7841

70 1.8310 3.5400

80 1.8310 3.4179

90 1.9531 3.2959

Fig. 6. Experimental system: POSTECH flexible robot.

J. Cheong, Y. Youm / Journal of Sound and Vibration 268 (2003) 49–7064



where the first term on the right hand side is the proportional servo action. While keeping the
system closed, we applied an impulsive torque at joint 1 to initiate the vibration. Technically, a
small amount of active damping was added to reduce chattering caused by friction compensation
in Eq. (38). The recorded values in Table 7 are close to numerically calculated results in Table 4.
As shown, larger proportional gain makes the natural frequencies larger. They will ultimately

ARTICLE IN PRESS

1 10

1E-6

1E-5

1E-4

1E-3

F
F

T
 V

al
ue

 [D
ef

le
ct

io
n]

Frequency[Hz]
1 10

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

F
F

T
 V

al
ue

 [D
ef

le
ct

io
n]

Frequency[Hz]

1 10
1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

F
F

T
 V

al
ue

 [D
ef

le
ct

io
n]

Frequency[Hz]
1 10

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

F
F

T
 V

al
ue

 [D
ef

le
ct

io
n]

Frequency[Hz]

(a)                                 �3 =   0° (b)                                 �3 =   30°

(c)                                 �3 =   60° (d)                                 �3 =   90°

Fig. 7. FFT plots: clamped.

Table 7

Pinned–spring joint ðy2 ¼ 901Þ: experiment

Elbow angle ðy2Þ (deg) Kp1 ¼ 50 Kp1 ¼ 100 Kp1 ¼ 300

f1 (Hz) f2 (Hz) f3 (Hz) f1 (Hz) f2 (Hz) f3 (Hz) f1 (Hz) f2 (Hz) f3 (Hz)

0 1.0071 3.8452 7.8735 1.2817 4.2419 8.6975 1.4648 4.6692 11.3220

10 1.0376 3.7537 7.8430 1.2512 4.0894 8.4534 1.4648 4.5471 11.1694

20 1.0376 3.6011 7.7515 1.2817 3.9673 8.4534 1.4954 4.3945 11.1694

30 1.0681 3.4485 7.6599 1.3123 3.7537 8.3923 1.5258 4.1504 11.2000

40 1.0986 3.2959 7.5989 1.3428 3.5400 8.3618 1.5564 3.8757 11.1694

50 1.0986 3.1128 7.5378 1.3733 3.3264 8.3008 1.5869 3.6316 11.1694

60 1.1597 2.9297 7.5073 1.3733 3.3264 8.3008 1.6479 3.4180 11.3831

70 1.1902 2.7771 7.4768 1.4648 2.9297 8.2397 1.7090 3.2043 11.4746

80 1.2207 2.6245 7.4158 1.5259 2.777 8.2092 1.7700 3.0518 11.3831

90 1.2817 2.5330 7.3853 1.5869 2.6550 8.2092 1.8616 2.8992 11.3525
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approach to those of the clamped boundary condition for infinite gain. The FFT plot in Fig. 8
illustrates how the proportional gain affect the natural frequencies. Finally, in the pinned–spring
joint, we verified the effect of the angle of the shoulder joint y2 to the natural frequencies. For
different y2’s, modal tests were performed, while K1 and y3 were fixed to 1001 and 01: Fig. 9 shows
the results after smoothing spikes of data. As y2 was increased, the first two natural frequencies
were reduced. Meanwhile, the third mode was increased little by little, which matches well with the
numerical results.
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Fig. 8. FFT plots: pinned–spring ðy2 ¼ 901Þ:
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6. Concluding remarks

The system mode analysis of horizontal vibration of a 3-D two-link flexible manipulator was
investigated. To predict real systems more accurately, the mixed bending-torsional problem was
formulated and analyzed using the extended Hamilton’s principle. Without torsion modelling, the
results would fail to precisely anticipate the actual horizontal vibration. The associated complex
boundary conditions were derived, and their validity was confirmed. Depending on the modelling
of boundary condition at joint 1, the modal frequencies and mode shapes underwent large change.
In the pinned–spring joint model, the proportional gain and configurations were the key
parameters for determining the natural frequencies. On the other hand, in the clamped joint
model, the natural frequencies were affected only by the relative configuration of two flexible
links. Through numerical and experimental studies, we verified the validity of our analysis. The
analysis results can be applied to flexible structures in combination with bending and torsional
vibration.

Appendix A

Proof of Eq. (36). From Eqs. (30) and (31), it can be written thatZ L2
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Applying the integration by part and putting condition in Eq. (15), the right hand side of
Eq. (A.1) becomesZ L2
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Especially, introducing f0
jðL2Þ � sin y3ZjðL2Þ ¼ c0

jð0Þ and fjðL2Þ ¼ cjð0Þ in Eqs. (16) and (17) into
the above equation, it becomes
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Similarly, if we exchange i and j; it becomes
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By subtracting Eq. (A.4) from Eq. (A.3), we have
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Since, o2
i ao2

j for iaj; the second parenthesized term must be zero, which concludes the
proof. &

Proof of Eq. (37). Similar to clamped case, from Eqs. (30) and (31), it can be written thatZ L2
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Applying the integration by part and introducing condition that fjð0Þ ¼ 0; the right hand side of
the Eq. (A.6) becomesZ L2

0

EI2f
00
i ðx2Þf

00
j ðx2Þ dx2 þ

Z L3

0

EI3c
00
i ðx3Þc

00
j ðx3Þ dx3 þ

Z L2

0

GJ2Z0iðx2ÞZ0jðx2Þ dx2

þ EI2f
000
i ðL2ÞfjðL2Þ � EI2f

00
i ðL2Þf

0
jðL2Þ þ EI2f

00
i ð0Þf

0
jð0Þ þ EI3c

000
i ðL3ÞcjðL3Þ

� EI3c
000
i ð0Þcjð0Þ � EI3c

00
i ðL3Þc

0
jðL3Þ þ EI3c

00
i ð0Þc

0
jð0Þ � GJ2Z0iðL2ÞZjðL2Þ:
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Imposing the boundary conditions in Eqs. (16)–(22), and (26), we can getZ L2

0

EI2l
4
i fiðx2Þfjðx2Þ dx2 þ

Z L3

0

EI3m4i ciðx3Þcjðx3Þ dx3 þ
Z L2

0

GJ2k2i Ziðx2ÞZjðx2Þ dx2

¼
Z L2

0

EI2f
00
i ðx2Þf

00
j ðx2Þ dx2 þ

Z L3

0

EI3c
00
i ðx3Þc

00
j ðx3Þ dx3 þ

Z L2

0

GJ2Z0iðx2ÞZ0jðx2Þ dx2

� o2
i McfiðL2ÞfjðL2Þ þ EI3c

000
i ð0ÞfjðL2Þ þ

K1

sin2 y2
f0

ið0Þf
0
jð0Þ � o2

i

J1

sin2 y2
f0

ið0Þf
0
jð0Þ

� cos y3EI3c
00
i ð0Þf

0
jðL2Þ � o2

i Ic;yf
0
iðL2Þf

0
jðL2Þ � o2

i MtipciðL3ÞcjðL3Þ � EI3c
000
i ð0Þcjð0Þ

� o2
i Itipc

0
iðL3Þc

0
jðL3Þ þ EI3c

00
i ð0Þc

0
jð0Þ þ sin y3EI3c

00
i ð0ÞZj � o2

i Ic;xZiðL2ÞZjðL2Þ: ðA:7Þ

Further, introducing f0
jðL2Þ � sin y3ZjðL2Þ ¼ c0

jð0Þ and fjðL2Þ ¼ cjð0Þ into the above equation, it
becomes

o2
i

Z L2

0

r2fiðx2Þfjðx2Þ dx2 þ o2
i

Z L3

0

r3ciðx3Þcjðx3Þ dx3 þ o2
i

Z L2

0

b2Ziðx2ÞZjðx2Þ dx2

¼
Z L2

0

EI2f
00
i ðx2Þf

00
j ðx2Þ dx2 þ

Z L3

0

EI3c
00
i ðx3Þc

00
j ðx3Þ dx3 þ

Z L2

0

GJ2Z0iðx2ÞZ0jðx2Þ dx2

� o2
i

J1

sin2 y2
f0

ið0Þf
0
jð0Þ þ McfiðL2ÞfjðL2Þ þ Ic;yf

0
iðL2Þf

0
jðL2Þ þ MtipciðL3ÞcjðL3Þ

�

þItipc
0
iðL3Þc

0
jðL3Þ þ Ic;xZiðL2ÞZjðL2Þ



þ

K1

sin2 y2
f0

ið0Þf
0
jð0Þ: ðA:8Þ

In the above, different from the proof of Eq. (A.3), a term related with servo gain is appeared,
though it will be cancelled and dropped out. If we exchange i and j; it becomes

o2
j

Z L2

0

r2fjðx2Þfiðx2Þ dx2 þ o2
j

Z L3

0

r3cjðx3Þciðx3Þ dx3 þ o2
j

Z L2

0

b2Zjðx2ÞZiðx2Þ dx2

¼
Z L2

0

EI2f
00
j ðx2Þf

00
i ðx2Þ dx2 þ

Z L3

0

EI3c
00
j ðx3Þc

00
i ðx3Þ dx3 þ

Z L2

0

GJ2Z0jðx2ÞZ0iðx2Þ dx2

� o2
j

J1

sin2 y2
f0

jð0Þf
0
ið0Þ þ McfjðL2ÞfiðL2Þ þ Ic;yf

0
jðL2Þf

0
iðL2Þ þ MtipcjðL3ÞciðL3Þ

�

þItipc
0
jðL3Þc

0
iðL3Þ þ Ic;xZjðL2ÞZiðL2Þ



þ

K1

sin2 y2
f0

jð0Þf
0
ið0Þ: ðA:9Þ

By subtracting Eq. (A.9) from Eq. (A.8), we have

0 ¼ðo2
i � o2

j Þ
Z L2

0

r2fiðx2Þfjðx2Þ dx2 þ
Z L3

0

r3ciðx3Þcjðx3Þ dx3 þ
Z L2

0

b2Ziðx2ÞZjðx2Þ dx2

�

þ
J1

sin2 y2
f0

jð0Þf
0
ið0Þ þ McfiðL2ÞfjðL2Þ þ Ic;yf

0
iðL2Þf

0
jðL2Þ

þMtipciðL3ÞcjðL3Þ þ Itipc
0
iðL3Þc

0
jðL3Þ þ Ic;xZiðL2ÞZjðL2Þ



: ðA:10Þ

ARTICLE IN PRESS

J. Cheong, Y. Youm / Journal of Sound and Vibration 268 (2003) 49–70 69



Since, o2
i ao2

j for iaj; the second parenthesized term must be zero, which concludes the
proof. &
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